This entry includes membrane transporters and represents some 7 of potentially 14-16 TM regions. In many instances, its members forms part of complex I that catalyses the transfer of two electrons from NADH to ubiquinone in a reaction that is associa ...
This entry includes membrane transporters and represents some 7 of potentially 14-16 TM regions. In many instances, its members forms part of complex I that catalyses the transfer of two electrons from NADH to ubiquinone in a reaction that is associated with proton translocation across the membrane, and in this context is a combination predominantly of subunits 2, 4, 5, 14, L, M and N [1]. In many bacterial species these proteins are probable stand-alone transporters not coupled with oxidoreduction [2].
This entry represents the C-terminal region of several NADH dehydrogenase subunit 5 proteins and is found in conjunction with Pfam:PF00361 and Pfam:PF00662.
This entry represents an amino terminal extension of Pfam:PF00361. Only NADH-Ubiquinone chain 5 and eubacterial chain L are in this family. This sub-family is part of complex I which catalyses the transfer of two electrons from NADH to ubiquinone in ...
This entry represents an amino terminal extension of Pfam:PF00361. Only NADH-Ubiquinone chain 5 and eubacterial chain L are in this family. This sub-family is part of complex I which catalyses the transfer of two electrons from NADH to ubiquinone in a reaction that is associated with proton translocation across the membrane.
This entry includes membrane transporters and represents some 7 of potentially 14-16 TM regions. In many instances, its members forms part of complex I that catalyses the transfer of two electrons from NADH to ubiquinone in a reaction that is associa ...
This entry includes membrane transporters and represents some 7 of potentially 14-16 TM regions. In many instances, its members forms part of complex I that catalyses the transfer of two electrons from NADH to ubiquinone in a reaction that is associated with proton translocation across the membrane, and in this context is a combination predominantly of subunits 2, 4, 5, 14, L, M and N [1]. In many bacterial species these proteins are probable stand-alone transporters not coupled with oxidoreduction [2].
This domain is found at the N-terminal end of NADH-ubiquinone oxidoreductase chain 4 and similar sequences from bacteria and eukaryotes. This domain is found upstream of Pfam:PF00361 and shows an all-alpha structure.
This entry includes membrane transporters and represents some 7 of potentially 14-16 TM regions. In many instances, its members forms part of complex I that catalyses the transfer of two electrons from NADH to ubiquinone in a reaction that is associa ...
This entry includes membrane transporters and represents some 7 of potentially 14-16 TM regions. In many instances, its members forms part of complex I that catalyses the transfer of two electrons from NADH to ubiquinone in a reaction that is associated with proton translocation across the membrane, and in this context is a combination predominantly of subunits 2, 4, 5, 14, L, M and N [1]. In many bacterial species these proteins are probable stand-alone transporters not coupled with oxidoreduction [2].
This family consists of the C-terminal region specific to the eukaryotic NADH dehydrogenase subunit 2 protein and is found in conjunction with Pfam:PF00361.
This family consists of various deoxynucleoside kinases cytidine EC:2.7.1.74, guanosine EC:2.7.1.113, adenosine EC:2.7.1.76 and thymidine kinase EC:2.7.1.21 (which also phosphorylates deoxyuridine and deoxycytosine.) These enzymes catalyse the prod ...
This family consists of various deoxynucleoside kinases cytidine EC:2.7.1.74, guanosine EC:2.7.1.113, adenosine EC:2.7.1.76 and thymidine kinase EC:2.7.1.21 (which also phosphorylates deoxyuridine and deoxycytosine.) These enzymes catalyse the production of deoxynucleotide 5'-monophosphate from a deoxynucleoside. Using ATP and yielding ADP in the process.
A 4'-phosphopantetheine prosthetic group is attached through a serine. This prosthetic group acts as a a 'swinging arm' for the attachment of activated fatty acid and amino-acid groups. This domain forms a four helix bundle. This family includes memb ...
A 4'-phosphopantetheine prosthetic group is attached through a serine. This prosthetic group acts as a a 'swinging arm' for the attachment of activated fatty acid and amino-acid groups. This domain forms a four helix bundle. This family includes members not included in Prosite. The inclusion of these members is supported by sequence analysis and functional evidence. The related domain of Swiss:P19828 has the attachment serine replaced by an alanine.