3K9N

Allosteric modulation of H-Ras GTPase


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.277 
  • R-Value Work: 0.213 
  • R-Value Observed: 0.220 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.3 of the entry. See complete history


Literature

Allosteric modulation of Ras positions Q61 for a direct role in catalysis.

Buhrman, G.Holzapfel, G.Fetics, S.Mattos, C.

(2010) Proc Natl Acad Sci U S A 107: 4931-4936

  • DOI: https://doi.org/10.1073/pnas.0912226107
  • Primary Citation of Related Structures:  
    3K8Y, 3K9N, 3LBH, 3LBI, 3LBN

  • PubMed Abstract: 

    Ras and its effector Raf are key mediators of the Ras/Raf/MEK/ERK signal transduction pathway. Mutants of residue Q61 impair the GTPase activity of Ras and are found prominently in human cancers. Yet the mechanism through which Q61 contributes to catalysis has been elusive. It is thought to position the catalytic water molecule for nucleophilic attack on the gamma-phosphate of GTP. However, we previously solved the structure of Ras from crystals with symmetry of the space group R32 in which switch II is disordered and found that the catalytic water molecule is present. Here we present a structure of wild-type Ras with calcium acetate from the crystallization mother liquor bound at a site remote from the active site and likely near the membrane. This results in a shift in helix 3/loop 7 and a network of H-bonding interactions that propagates across the molecule, culminating in the ordering of switch II and placement of Q61 in the active site in a previously unobserved conformation. This structure suggests a direct catalytic role for Q61 where it interacts with a water molecule that bridges one of the gamma-phosphate oxygen atoms to the hydroxyl group of Y32 to stabilize the transition state of the hydrolysis reaction. We propose that Raf together with the binding of Ca(2+) and a negatively charged group mimicked in our structure by the acetate molecule induces the ordering of switch I and switch II to complete the active site of Ras.


  • Organizational Affiliation

    Department of Molecular and Structural Biochemistry, North Carolina State University, 128 Polk Hall-CB 7622, Raleigh, NC 27695, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
GTPase HRas166Homo sapiensMutation(s): 1 
Gene Names: HRASHRAS1
EC: 3.6.5.2
UniProt & NIH Common Fund Data Resources
Find proteins for P01112 (Homo sapiens)
Explore P01112 
Go to UniProtKB:  P01112
PHAROS:  P01112
GTEx:  ENSG00000174775 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP01112
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 3 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
GNP
Query on GNP

Download Ideal Coordinates CCD File 
B [auth A]PHOSPHOAMINOPHOSPHONIC ACID-GUANYLATE ESTER
C10 H17 N6 O13 P3
UQABYHGXWYXDTK-UUOKFMHZSA-N
CA
Query on CA

Download Ideal Coordinates CCD File 
C [auth A]CALCIUM ION
Ca
BHPQYMZQTOCNFJ-UHFFFAOYSA-N
MG
Query on MG

Download Ideal Coordinates CCD File 
D [auth A]MAGNESIUM ION
Mg
JLVVSXFLKOJNIY-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.277 
  • R-Value Work: 0.213 
  • R-Value Observed: 0.220 
  • Space Group: P 31 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 38.423α = 90
b = 38.423β = 90
c = 191.749γ = 120
Software Package:
Software NamePurpose
HKL-2000data collection
PHASESphasing
PHENIXrefinement
HKL-2000data reduction
HKL-2000data scaling

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2010-03-02
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2021-10-13
    Changes: Database references, Derived calculations
  • Version 1.3: 2023-09-06
    Changes: Data collection, Refinement description