5OCC

Crystal structure of CD32b (Fc Gamma Receptor IIb) in complex with Human IgG1 Fab fragment (6G08)


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.50 Å
  • R-Value Free: 0.261 
  • R-Value Work: 0.192 
  • R-Value Observed: 0.196 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 2.1 of the entry. See complete history


Literature

Evaluating Anti-CD32b F(ab) Conformation Using Molecular Dynamics and Small-Angle X-Ray Scattering.

Sutton, E.J.Bradshaw, R.T.Orr, C.M.Frendeus, B.Larsson, G.Teige, I.Cragg, M.S.Tews, I.Essex, J.W.

(2018) Biophys J 115: 289-299

  • DOI: https://doi.org/10.1016/j.bpj.2018.03.040
  • Primary Citation of Related Structures:  
    5OCC

  • PubMed Abstract: 

    Complementary strategies of small-angle x-ray scattering (SAXS) and crystallographic analysis are often used to determine atomistic three-dimensional models of macromolecules and their variability in solution. This combination of techniques is particularly valuable when applied to macromolecular complexes to detect changes within the individual binding partners. Here, we determine the x-ray crystallographic structure of a F(ab) fragment in complex with CD32b, the only inhibitory Fc-γ receptor in humans, and compare the structure of the F(ab) from the crystal complex to SAXS data for the F(ab) alone in solution. We investigate changes in F(ab) structure by predicting theoretical scattering profiles for atomistic structures extracted from molecular dynamics (MD) simulations of the F(ab) and assessing the agreement of these structures to our experimental SAXS data. Through principal component analysis, we are able to extract principal motions observed during the MD trajectory and evaluate the influence of these motions on the agreement of structures to the F(ab) SAXS data. Changes in the F(ab) elbow angle were found to be important to reach agreement with the experimental data; however, further discrepancies were apparent between our F(ab) structure from the crystal complex and SAXS data. By analyzing multiple MD structures observed in similar regions of the principal component analysis, we were able to pinpoint these discrepancies to a specific loop region in the F(ab) heavy chain. This method, therefore, not only allows determination of global changes but also allows identification of localized motions important for determining the agreement between atomistic structures and SAXS data. In this particular case, the findings allowed us to discount the hypothesis that structural changes were induced upon complex formation, a significant find informing the drug development process. The methodology described here is generally applicable to deconvolute global and local changes of macromolecular structures and is well suited to other systems.


  • Organizational Affiliation

    Antibody & Vaccine Group, Cancer Sciences Unit, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom; Department of Chemistry, University of Southampton, Highfield Campus, Southampton, United Kingdom; Department of Biological Sciences, Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, United Kingdom.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Low affinity immunoglobulin gamma Fc region receptor II-b176Homo sapiensMutation(s): 0 
Gene Names: FCGR2BCD32FCG2IGFR2
UniProt & NIH Common Fund Data Resources
Find proteins for P31994 (Homo sapiens)
Explore P31994 
Go to UniProtKB:  P31994
PHAROS:  P31994
GTEx:  ENSG00000072694 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP31994
Glycosylation
Glycosylation Sites: 2Go to GlyGen: P31994-1
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
6G08 Fab heavy chainB [auth H]222Homo sapiensMutation(s): 0 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 3
MoleculeChains Sequence LengthOrganismDetailsImage
6G08 Fab Light ChainC [auth L]217Homo sapiensMutation(s): 0 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
Sequence Annotations
Expand
  • Reference Sequence
Oligosaccharides

Help

Entity ID: 4
MoleculeChains Length2D Diagram Glycosylation3D Interactions
2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranoseD [auth B]2N-Glycosylation
Glycosylation Resources
GlyTouCan:  G42666HT
GlyCosmos:  G42666HT
GlyGen:  G42666HT
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.50 Å
  • R-Value Free: 0.261 
  • R-Value Work: 0.192 
  • R-Value Observed: 0.196 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 70.23α = 90
b = 75.02β = 90
c = 134.95γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
XDSdata reduction
Aimlessdata scaling
MOLREPphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2018-07-25
    Type: Initial release
  • Version 1.1: 2019-10-16
    Changes: Data collection
  • Version 2.0: 2020-07-29
    Type: Remediation
    Reason: Carbohydrate remediation
    Changes: Advisory, Atomic model, Data collection, Derived calculations, Structure summary
  • Version 2.1: 2024-11-06
    Changes: Data collection, Database references, Structure summary