Crystal structures of the membrane-binding C2 domain of human coagulation factor V.
Macedo-Ribeiro, S., Bode, W., Huber, R., Quinn-Allen, M.A., Kim, S.W., Ortel, T.L., Bourenkov, G.P., Bartunik, H.D., Stubbs, M.T., Kane, W.H., Fuentes-Prior, P.(1999) Nature 402: 434-439
- PubMed: 10586886 
- DOI: https://doi.org/10.1038/46594
- Primary Citation of Related Structures:  
1CZS, 1CZT, 1CZV - PubMed Abstract: 
Rapid and controlled clot formation is achieved through sequential activation of circulating serine proteinase precursors on phosphatidylserine-rich procoagulant membranes of activated platelets and endothelial cells. The homologous complexes Xase and prothrombinase, each consisting of an active proteinase and a non-enzymatic cofactor, perform critical steps within this coagulation cascade. The activated cofactors VIIIa and Va, highly specific for their cognate proteinases, are each derived from precursors with the same A1-A2-B-A3-C1-C2 architecture. Membrane binding is mediated by the C2 domains of both cofactors. Here we report two crystal structures of the C2 domain of human factor Va. The conserved beta-barrel framework provides a scaffold for three protruding loops, one of which adopts markedly different conformations in the two crystal forms. We propose a mechanism of calcium-independent, stereospecific binding of factors Va and VIIIa to phospholipid membranes, on the basis of (1) immersion of hydrophobic residues at the apices of these loops in the apolar membrane core; (2) specific interactions with phosphatidylserine head groups in the groove enclosed by these loops; and (3) favourable electrostatic contacts of basic side chains with negatively charged membrane phosphate groups.
Organizational Affiliation: 
Max-Planck-Institut für Biochemie, Abteilung Strukturforschung, Martinsried, Germany.