A New Calmodulin Binding Motif for Inositol 1,4,5-Trisphosphate 3-Kinase Regulation.
Franco-Echevarria, E., Banos-Sanz, J.I., Monterroso, B., Round, A., Sanz-Aparicio, J., Gonzalez, B.(2014) Biochem J 463: 319
- PubMed: 25101901 
- DOI: https://doi.org/10.1042/BJ20140757
- Primary Citation of Related Structures:  
4UPU - PubMed Abstract: 
IP3-3K [Ins(1,4,5)P3 3-kinase] is a key enzyme that catalyses the synthesis of Ins(1,3,4,5)P4, using Ins(1,4,5)P3 and ATP as substrates. Both inositides, substrate and product, present crucial roles in the cell. Ins(1,4,5)P3 is a key point in Ca2+ metabolism that promotes Ca2+ release from intracellular stores and together with Ins(1,3,4,5)P4 regulates Ca2+ homoeostasis. In addition, Ins(1,3,4,5)P4 is involved in immune cell development. It has been proved that Ca2+/CaM (calmodulin) regulates the activity of IP3-3K, via direct interaction between both enzymes. Although we have extensive structural knowledge of the kinase domains of the three IP3-3K isoforms, no structural information is available about the interaction between IP3-3K and Ca2+/CaM. In the present paper we describe the crystal structure of the complex between human Ca2+/CaM and the CaM-binding region of human IP3-3K isoform A (residues 158-183) and propose a model for a complex including the kinase domain. The structure obtained allowed us to identify all of the key residues involved in the interaction, which have been evaluated by site-directed mutagenesis, pull-down and fluorescence anisotropy experiments. The results allowed the identification of a new CaM-binding motif, expanding our knowledge about how CaM interacts with its partners.
Organizational Affiliation: 
*Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto de Química-Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain.