1ELI

COMPLEX OF MONOMERIC SARCOSINE OXIDASE WITH THE INHIBITOR PYRROLE-2-CARBOXYLATE


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.213 
  • R-Value Work: 0.163 
  • R-Value Observed: 0.163 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.4 of the entry. See complete history


Literature

Monomeric sarcosine oxidase: 1. Flavin reactivity and active site binding determinants.

Wagner, M.A.Trickey, P.Chen, Z.W.Mathews, F.S.Jorns, M.S.

(2000) Biochemistry 39: 8813-8824

  • DOI: https://doi.org/10.1021/bi000349z
  • Primary Citation of Related Structures:  
    1EL5, 1EL7, 1EL8, 1EL9, 1ELI

  • PubMed Abstract: 

    Monomeric sarcosine oxidase (MSOX) is an inducible bacterial flavoenzyme that catalyzes the oxidative demethylation of sarcosine (N-methylglycine) and contains covalently bound FAD [8alpha-(S-cysteinyl)FAD]. This paper describes the spectroscopic and thermodynamic properties of MSOX as well as the X-ray crystallographic characterization of three new enzyme.inhibitor complexes. MSOX stabilizes the anionic form of the oxidized flavin (pK(a) = 8.3 versus 10.4 with free FAD), forms a thermodynamically stable flavin radical, and stabilizes the anionic form of the radical (pK(a) < 6 versus pK(a) = 8.3 with free FAD). MSOX forms a covalent flavin.sulfite complex, but there appears to be a significant kinetic barrier against complex formation. Active site binding determinants were probed in thermodynamic studies with various substrate analogues whose binding was found to perturb the flavin absorption spectrum and inhibit MSOX activity. The carboxyl group of sarcosine is essential for binding since none is observed with simple amines. The amino group of sarcosine is not essential, but binding affinity depends on the nature of the substitution (CH(3)XCH(2)CO(2)(-), X = CH(2) < O < S < Se < Te), an effect which has been attributed to differences in the strength of donor-pi interactions. MSOX probably binds the zwitterionic form of sarcosine, as judged by the spectrally similar complexes formed with dimethylthioacetate [(CH(3))(2)S(+)CH(2)CO(2)(-)] and dimethylglycine (K(d) = 20.5 and 17.4 mM, respectively) and by the crystal structure of the latter. The methyl group of sarcosine is not essential but does contribute to binding affinity. The methyl group contribution varied from -3.79 to -0.65 kcal/mol with CH(3)XCH(2)CO(2)(-) depending on the nature of the heteroatom (NH(2)(+) > O > S) and appeared to be inversely correlated with heteroatom electron density. Charge-transfer complexes are formed with MSOX and CH(3)XCH(2)CO(2)(-) when X = S, Se, or Te. An excellent linear correlation is observed between the energy of the charge transfer bands and the one-electron reduction potentials of the ligands. The presence of a sulfur, selenium, or telurium atom identically positioned with respect to the flavin ring is confirmed by X-ray crystallography, although the increased atomic radius of S < Se < Te appears to simultaneously favor an alternate binding position for the heavier atoms. Although L-proline is a poor substrate, aromatic heterocyclic carboxylates containing a five-membered ring and various heteroatoms (X = NH, O, S) are good ligands (K(d, X=NH) = 1.37 mM) and form charge-transfer complexes with MSOX. The energy of the charge-transfer bands (S > O >> NH) is linearly correlated with the one-electron ionization potentials of the corresponding heterocyclic rings.


  • Organizational Affiliation

    Department of Biochemistry, MCP Hahnemann School of Medicine, Philadelphia, Pennsylvania 19129, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
SARCOSINE OXIDASE
A, B
389Bacillus sp. B-0618Mutation(s): 7 
EC: 1.5.3.1
UniProt
Find proteins for P40859 (Bacillus sp. (strain B-0618))
Explore P40859 
Go to UniProtKB:  P40859
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP40859
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 4 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
FAD
Query on FAD

Download Ideal Coordinates CCD File 
E [auth A],
J [auth B]
FLAVIN-ADENINE DINUCLEOTIDE
C27 H33 N9 O15 P2
VWWQXMAJTJZDQX-UYBVJOGSSA-N
PYC
Query on PYC

Download Ideal Coordinates CCD File 
F [auth A],
K [auth B],
L [auth B]
PYRROLE-2-CARBOXYLATE
C5 H4 N O2
WRHZVMBBRYBTKZ-UHFFFAOYSA-M
PO4
Query on PO4

Download Ideal Coordinates CCD File 
C [auth A],
G [auth B],
H [auth B]
PHOSPHATE ION
O4 P
NBIIXXVUZAFLBC-UHFFFAOYSA-K
CL
Query on CL

Download Ideal Coordinates CCD File 
D [auth A],
I [auth B]
CHLORIDE ION
Cl
VEXZGXHMUGYJMC-UHFFFAOYSA-M
Modified Residues  1 Unique
IDChains TypeFormula2D DiagramParent
MSE
Query on MSE
A, B
L-PEPTIDE LINKINGC5 H11 N O2 SeMET
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.213 
  • R-Value Work: 0.163 
  • R-Value Observed: 0.163 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 72.825α = 90
b = 69.36β = 94.14
c = 73.737γ = 90
Software Package:
Software NamePurpose
CNSrefinement
SCALEPACKdata scaling

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2000-12-06
    Type: Initial release
  • Version 1.1: 2008-04-27
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Source and taxonomy, Version format compliance
  • Version 1.3: 2017-10-04
    Changes: Refinement description
  • Version 1.4: 2024-11-13
    Changes: Data collection, Database references, Derived calculations, Structure summary