1GAG

CRYSTAL STRUCTURE OF THE INSULIN RECEPTOR KINASE IN COMPLEX WITH A BISUBSTRATE INHIBITOR


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.70 Å
  • R-Value Free: 0.269 
  • R-Value Work: 0.214 
  • R-Value Observed: 0.214 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.6 of the entry. See complete history


Literature

Mechanism-based design of a protein kinase inhibitor.

Parang, K.Till, J.H.Ablooglu, A.J.Kohanski, R.A.Hubbard, S.R.Cole, P.A.

(2001) Nat Struct Biol 8: 37-41

  • DOI: https://doi.org/10.1038/83028
  • Primary Citation of Related Structures:  
    1GAG

  • PubMed Abstract: 

    Protein kinase inhibitors have applications as anticancer therapeutic agents and biological tools in cell signaling. Based on a phosphoryl transfer mechanism involving a dissociative transition state, a potent and selective bisubstrate inhibitor for the insulin receptor tyrosine kinase was synthesized by linking ATPgammaS to a peptide substrate analog via a two-carbon spacer. The compound was a high affinity competitive inhibitor against both nucleotide and peptide substrates and showed a slow off-rate. A crystal structure of this inhibitor bound to the tyrosine kinase domain of the insulin receptor confirmed the key design features inspired by a dissociative transition state, and revealed that the linker takes part in the octahedral coordination of an active site Mg2+. These studies suggest a general strategy for the development of selective protein kinase inhibitors.


  • Organizational Affiliation

    The Johns Hopkins University School of Medicine, Department of Pharmacology Molecular Sciences, Baltimore, Maryland 21205, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
INSULIN RECEPTOR, TYROSINE KINASE DOMAIN306Homo sapiensMutation(s): 4 
EC: 2.7.1.112 (PDB Primary Data), 2.7.10.1 (UniProt)
UniProt & NIH Common Fund Data Resources
Find proteins for P06213 (Homo sapiens)
Explore P06213 
Go to UniProtKB:  P06213
PHAROS:  P06213
GTEx:  ENSG00000171105 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP06213
Sequence Annotations
Expand
  • Reference Sequence

Find similar proteins by:  Sequence   |   3D Structure  

Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
BISUBSTRATE PEPTIDE INHIBITOR13N/AMutation(s): 0 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Modified Residues  1 Unique
IDChains TypeFormula2D DiagramParent
PTR
Query on PTR
A
L-PEPTIDE LINKINGC9 H12 N O6 PTYR
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.70 Å
  • R-Value Free: 0.269 
  • R-Value Work: 0.214 
  • R-Value Observed: 0.214 
  • Space Group: P 32 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 66.3α = 90
b = 66.3β = 90
c = 138.1γ = 120
Software Package:
Software NamePurpose
CNSrefinement
DENZOdata reduction
SCALEPACKdata scaling
CNSphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2001-01-17
    Type: Initial release
  • Version 1.1: 2008-04-27
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Atomic model, Database references, Derived calculations, Non-polymer description, Structure summary, Version format compliance
  • Version 1.3: 2021-10-27
    Changes: Database references, Derived calculations
  • Version 1.4: 2023-08-09
    Changes: Data collection, Refinement description
  • Version 1.5: 2023-11-15
    Changes: Data collection
  • Version 1.6: 2024-10-30
    Changes: Structure summary