1TUB

TUBULIN ALPHA-BETA DIMER, ELECTRON DIFFRACTION


Experimental Data Snapshot

  • Method: ELECTRON CRYSTALLOGRAPHY
  • Resolution: 3.70 Å

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Structure of the alpha beta tubulin dimer by electron crystallography.

Nogales, E.Wolf, S.G.Downing, K.H.

(1998) Nature 391: 199-203

  • DOI: https://doi.org/10.1038/34465
  • Primary Citation of Related Structures:  
    1TUB

  • PubMed Abstract: 

    The alphabeta tubulin heterodimer is the structural subunit of microtubules, which are cytoskeletal elements that are essential for intracellular transport and cell division in all eukaryotes. Each tubulin monomer binds a guanine nucleotide, which is nonexchangeable when it is bound in the alpha subunit, or N site, and exchangeable when bound in the beta subunit, or E site. The alpha- and beta-tubulins share 40% amino-acid sequence identity, both exist in several isotype forms, and both undergo a variety of posttranslational modifications. Limited sequence homology has been found with the proteins FtsZ and Misato, which are involved in cell division in bacteria and Drosophila, respectively. Here we present an atomic model of the alphabeta tubulin dimer fitted to a 3.7-A density map obtained by electron crystallography of zinc-induced tubulin sheets. The structures of alpha- and beta-tubulin are basically identical: each monomer is formed by a core of two beta-sheets surrounded by alpha-helices. The monomer structure is very compact, but can be divided into three functional domains: the amino-terminal domain containing the nucleotide-binding region, an intermediate domain containing the Taxol-binding site, and the carboxy-terminal domain, which probably constitutes the binding surface for motor proteins.


  • Organizational Affiliation

    Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
TUBULIN440Sus scrofaMutation(s): 0 
EC: 3.6.5
UniProt
Find proteins for P02550 (Sus scrofa)
Explore P02550 
Go to UniProtKB:  P02550
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP02550
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
TUBULIN427Sus scrofaMutation(s): 0 
UniProt
Find proteins for P02554 (Sus scrofa)
Explore P02554 
Go to UniProtKB:  P02554
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP02554
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 3 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
TXL
Query on TXL

Download Ideal Coordinates CCD File 
E [auth B]TAXOTERE
C43 H53 N O14
ZDZOTLJHXYCWBA-VCVYQWHSSA-N
GTP
Query on GTP

Download Ideal Coordinates CCD File 
C [auth A]GUANOSINE-5'-TRIPHOSPHATE
C10 H16 N5 O14 P3
XKMLYUALXHKNFT-UUOKFMHZSA-N
GDP
Query on GDP

Download Ideal Coordinates CCD File 
D [auth B]GUANOSINE-5'-DIPHOSPHATE
C10 H15 N5 O11 P2
QGWNDRXFNXRZMB-UUOKFMHZSA-N
Experimental Data & Validation

Experimental Data

  • Method: ELECTRON CRYSTALLOGRAPHY
  • Resolution: 3.70 Å
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 80α = 90
b = 92β = 90
c = 90γ = 90

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1998-10-07
    Type: Initial release
  • Version 1.1: 2008-03-03
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2024-06-05
    Changes: Author supporting evidence, Data collection, Data processing, Database references, Derived calculations, Other