4IVN

The Vibrio vulnificus NanR protein complexed with ManNAc-6P


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.90 Å
  • R-Value Free: 0.235 
  • R-Value Work: 0.181 
  • R-Value Observed: 0.183 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.3 of the entry. See complete history


Literature

Structural insights into the regulation of sialic acid catabolism by the Vibrio vulnificus transcriptional repressor NanR

Hwang, J.Kim, B.S.Jang, S.Y.Lim, J.G.You, D.J.Jung, H.S.Oh, T.K.Lee, J.O.Choi, S.H.Kim, M.H.

(2013) Proc Natl Acad Sci U S A 110: E2829-E2837

  • DOI: https://doi.org/10.1073/pnas.1302859110
  • Primary Citation of Related Structures:  
    4IVN

  • PubMed Abstract: 

    Pathogenic and commensal bacteria that experience limited nutrient availability in their host have evolved sophisticated systems to catabolize the mucin sugar N-acetylneuraminic acid, thereby facilitating their survival and colonization. The correct function of the associated catabolic machinery is particularly crucial for the pathogenesis of enteropathogenic bacteria during infection, although the molecular mechanisms involved with the regulation of the catabolic machinery are unknown. This study reports the complex structure of NanR, a repressor of the N-acetylneuraminate (nan) genes responsible for N-acetylneuraminic acid catabolism, and its regulatory ligand, N-acetylmannosamine 6-phosphate (ManNAc-6P), in the human pathogenic bacterium Vibrio vulnificus. Structural studies combined with electron microscopic, biochemical, and in vivo analysis demonstrated that NanR forms a dimer in which the two monomers create an arched tunnel-like DNA-binding space, which contains positively charged residues that interact with the nan promoter. The interaction between the NanR dimer and DNA is alleviated by the ManNAc-6P-mediated relocation of residues in the ligand-binding domain of NanR, which subsequently relieves the repressive effect of NanR and induces the transcription of the nan genes. Survival studies in which mice were challenged with a ManNAc-6P-binding-defective mutant strain of V. vulnificus demonstrated that this relocation of NanR residues is critical for V. vulnificus pathogenesis. In summary, this study presents a model of the mechanism that regulates sialic acid catabolism via NanR in V. vulnificus.


  • Organizational Affiliation

    Infection and Immunity Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Transcriptional regulator
A, B
278Vibrio vulnificus YJ016Mutation(s): 0 
UniProt
Find proteins for Q7MD38 (Vibrio vulnificus (strain YJ016))
Explore Q7MD38 
Go to UniProtKB:  Q7MD38
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ7MD38
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.90 Å
  • R-Value Free: 0.235 
  • R-Value Work: 0.181 
  • R-Value Observed: 0.183 
  • Space Group: P 31 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 109.205α = 90
b = 109.205β = 90
c = 82.472γ = 120
Software Package:
Software NamePurpose
REFMACrefinement

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2013-07-17
    Type: Initial release
  • Version 1.1: 2013-11-20
    Changes: Database references
  • Version 1.2: 2020-07-29
    Type: Remediation
    Reason: Carbohydrate remediation
    Changes: Data collection, Derived calculations, Structure summary
  • Version 1.3: 2024-03-20
    Changes: Data collection, Database references, Refinement description, Structure summary